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Abstract-A technique is presented for the characterization of a horizontal crack in an anisotropic
laminated plate. In this technique, a distributed harmonic load is applied on the plate surface and
then moved along the plate surface. The displacement in the thickness direction of the plate at the
central point of the distributed load is computed by using the strip element method, The crack
length is approximately determined from pattern change of the responses, which is found to have
significant change when the load moves over the crack tips. The crack depth is determined from the
intervals of the oscillations of the responses in the region between the two crack tips; the intervals
are found to be dependent on the crack depth and less dependent on the crack length. Approximate
polynomial formulae of degree three for predicting the depths of horizontal cracks in isotropic
homogeneous and anisotropic laminated plates are also proposed.

I. INTRODUCTION

Ultrasonic techniques playa very important role in detecting cracks in materials. Cracks
in composite laminated plates can also be detected and characterized by ultrasonic tech
niques, even though reliable results are much more difficult to obtain than for materials, such
as metals, that are homogeneous to a much smaller scale. In fiber reinforced composites, the
individual fibers are micrometers in diameter and the thicknesses of plies are of the order
of one-tenth of a millimetre. It would not be productive to attempt detection of cracks with
signals whose dominant wavelength is one-tenth of a millimetre or less. Such signals would
generate too much interference with the inhomogeneity of the material and they would be
rapidly attenuated. Lower frequency signals whose dominant wavelength is of the order of
the thickness of laminated plates, say millimetres, will propagate over longer distances,
since less interference is generated by such lower frequency signals. On the other hand,
however, the lower the frequency of the input signal, the less sensitive it is to the cracks.
Hence it would be difficult to use very low frequency signals whose dominant wavelength
is much longer than the plate thickness to detect cracks whose sizes are of the order of the
plate thickness.

The most important key in using the ultrasonic techniques successfully is to find out
the relationships between the characteristics of a crack and the scattered ultrasonic wave
fields. However, the finding of the relationships is very difficult. Basically the problem for
finding the relationship is usually an inverse problem, which needs a lot of computational
efforts. To solve an inverse problem, a large number of corresponding forward problems
has to be solved. Hence a very efficient method and suitable modeling for solving the
forward problem are a necessary prerequisite.

Scattering of waves in an elastic layer has been investigated by AI-Nassar et al. (1991)
and Karunasena et al. (1991) by using a combined finite element and Lamb wave modal
expansion method. Dispersion equations for Lamb waves were obtained by an exact
method. Karim et al. (1992) presented a similar technique which combines the finite element
method and guided wave mode expansions to calculate scattering of Lamb waves by cracks
or inclusions. In this method the finite element boundary has to be far away from the loads
and inclusions, because only Lamb waves with real wave numbers have been used in the
exterior regions. The boundary element method (BEM) has also been used for investigating
scattered waves in a half space and finite depth strata (Von Estorff et aI., 1990), where a
semi-numerical method was used to calculate Green's functions. Another efficient way,
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Fig. I. Division of a plate with a horizontal crack into domains in which the SEM can be applied.

presented by Liu and Datta (1993) and Liu et al. (1991 b), to investigate scattering of Lamb
waves is to combine the BEM and FEM, where the FEM is used for the interior region and
the BEM is used for the exterior region. Green's functions for the BEM were obtained by
using an integration technique given by Xu and Mal (1987). A strip element method (SEM)
has been proposed by Liu and Achenbach (1994a) for stress analysis of anisotropic linearly
elastic solids. In the SEM, the problem domain is first divided into a set of strip elements.
Then a dimension-reduced system of approximate differential equations is derived for the
strip elements by using the principle of virtual work. These equations are then solved
analytically. This method maintains many advantages of the FEM and BEM, but it requires
much less data storage. As in the FEM, the SEM can be used for anisotropic solids, but
like in the BEM, it only requires a small memory. The SEM has lately been extended to
investigate the scattering of waves by cracks in anisotropic laminated plates (Liu and
Achenbach, 1994b). The SEM provides a very good choice of methods for solving forward
problems of wave propagation in cracked anisotropic laminated plates. The major advan
tage of the SEM for solving wave scattering problems is the much smaller number of
equations compared with the finite element method (FEM). Consequently much shorter
computing time is needed for solutions of comparable accuracy.

In this paper the SEM is used to investigate the scattering of the wave fields in plates
by cracks; a technique is then presented for detecting a horizontal crack in plates. Numerical
experiments are made and it is shown that both the crack length and depth of a horizontal
crack in plates can be successfully detected.

2. STATEMENT OF THE PROBLEM

Consider an infinite plate containing a horizontal crack as shown in Fig. 1. The
material of the plate can be isotropic or anisotropic, and inhomogeneous in the thickness
direction such as in laminated composite plates. The thickness of the plate is denoted by
H, the length of the horizonal crack is denoted by ac , and the depth of the crack from the
upper surface of the plate is denoted by de' To simplify the problem, we assume that the
crack is throughout in the y-direction. The purpose of this paper is to provide a possible
technique to detect the crack and determine both the length and depth of the crack, by
exciting the plate with harmonic loads and analysing the subsequent responses of plate.

3. SOLUTION TO THE PROBLEM

3.1. Load applied to the plate
The plate is first excited by a harmonic loading which does not vary with the y

direction. Hence the problem is two-dimensional and is in the frequency domain. The load
acting on the surface of the plate is given by

F(x) = qo!(x) exp (iwt), (1)
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where qo is a constant and f(x) represents the distribution of the load along the x-direction
as shown in Fig. 1. In this paper, f(x) is assumed as follows:

f
_ {exP [-{(X+d)!ex}2 j, Ix-dl ~ b

(x) - 0, Ix-dl ~ b' (2)

Equation (2) is an approximation of a load generated by a laser beam, where d is the offset
of the center of the load from the origin (left crack tip), and b is the half-width of the
applied load, while ex is a parameter which controls the distribution of the load. In this
paper, b and ex are chosen to be O.IH and O.OSH, respectively.

3.2. The strip element method (SEM)
The procedures for using the SEM to solve the (two-dimensional) problem of wave

propagation in an anisotropic laminated plate are listed below.

• Divide the plate into some strip elements in the thickness direction.
• Derive an approximate governing differential equation for the field dependencies by

using the principle of virtual work for each element. This governing equation, which
plays the role of the equation of motion, is a one-dimension-reduced differential
equation. The field dependencies are functions oftime and the horizontal coordinate.

• Assemble the approximate governing differential equations for all elements; a set of
approximate differential equations for the whole plate is obtained by using the
boundary conditions in the horizonal direction.

• Solve the set of approximate differential equations analytically. The solution is a
sum of a particular solution and the complementary solution containing unknown
constants.

• Replace the unknown constants by unknown displacements on the vertical bound
aries, resulting in a set of equations which gives the relationship between the dis
placements and stresses at the nodal points on the vertical boundaries of the domains.

• Solve the set ofequations by using the vertical boundary conditions, the whole wave
field can then be easily obtained.

Detailed formulations have been given in papers by Liu and Achenbach (I994a, b).

3.3. Application of SEM to a plate with a horizontal crack
The cracked plate is divided into four sub-domains as denoted by Roman numerals in

Fig. 1. Domain I is bounded by boundaries bI, b2 and the upper and lower surfaces of the
plate. Domain II is bounded by boundaries b3, b4 and the upper and lower surfaces of the
plate. Domain III is bounded by boundary b I, b3, the upper surface of the plate and the
upper surface of the crack. Domain IV is bounded by boundaries b2 and b4, the lower
surfaces of the crack and the lower surface of the plate. In each domain the SEM is used
to obtain sets of equations which gives the relationship between the displacements and
stresses at the nodal points on the vertical boundaries of the sub-domains. For domain I,
we can obtain (Liu and Achenbach, 1994b)

(3)

where the superscript of the Roman numeral indicates the domain which the equation
governs, while K is the stiffness matrix of the domain. Vectors R, V and S are, respectively,
the external force vector acting on the vertical boundary, displacement vector on the vertical
boundary, and the equivalent stress vector caused by the external force acting on the
horizontal boundaries of the domain [see Liu and Achenbach (l994b)]. Equation (3) can
be further divided into sub-matrices as follows:
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(4)

where the subscripts bI and b2 stand, respectively, for the vectors on the upper and lower
right vertical boundary of the domain excluding the left crack tip. The subscript bL stands
for the vectors at the left crack tip.

Similarly, for domain II we obtain

(5)

where the subscripts b3 and b4 stand, respectively, for the vectors on the upper and lower
left vertical boundary of domain II excluding the right crack tip. The subscript bR stands
for the vectors at the right crack tip. For domains III and IV, we have

r~l [K''':
Kill KIII

K\'l] C''l rl12 13

R~Il K~': KIll Kill KIll VIII SIll
22 23

K:
'
: V:I~ + S:I~ (6)RIll - KIII

K~i KIllb3 31 33 34 b3 b3

R~'A K~: Kill KIll K~I~ V~I~ S~~42 43

and ell [K\1
K'V KIV

K~] ell ell12 13

R~~ K~'; K'V KIV
K~~ V~~ S~~22 23

(7)
RIV - K'V KIV K'V KJV VIV + SIV .bR 31 32 33 34 bR bR

R~~ K~'; KIV KJV K~~ V~~ S~~42 43

By assembling all the sets of the equations for all the domains by using the following
continuity conditions at the junctions which divide the plate into sub-domains,

Rbi = R~I RIll Vbl = Vtl = vt\J (8)bl,

RbL = RtL - R~l RtL VbL = VtL = vtIl = vty (9)

Rb2 = Rt2 - R~~ Vb2 = V~2 = v~~ (10)

Rb3 = R~'~ - R~~, Vb3 = V~~ = V~~ (11)

RbR = R~'A +R~~ R~IR' VbR = V~IR = V~I~ = V~~ (12)

Rb4 = Rt~ R~I4' Vb4 = vt~ = V~~, (13)

a set of equations which gives the relationship between the displacements and stresses at all
nodal points on the junctions can then be obtained. The equations are

(14)

where RJ is the external force vector acting on the junctions given by
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and VJ is the displacement vector acting on the junctions as follows

In eqn (14), SJ is given by

r
S~I -S~f

SI Sm SIV
bL - bL - bL

SI SlYS _ b2 - b2

J -1 SII +SIII- b3 b3

SII + Sill + SlY- bR bR bR

-s~~+s~~

In eqn (14), K is the stiffness matrix for the cracked plate given by
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(IS)

(16)

(17)

K~I-KIN KI
I2 -K~li K~3 Kill KIII 0- 13 - 14

K~, _K~l~ K~2 K~li -K~~ K~3 -K~i KIII -K~Il-K~~ _KII~- 23

KL K;2-K~~ K;3 -K~i 0 -K~j -K~~
K=

Kill KIll K;l~ _K~ll K~l-K~12 -K~1331 32 0

Klll K~i +Kj~ KIV KIll KII K~l-K~I2 + Kjj K;~ -K~1341 32 43 21

0 KIV KIV -K~\ K~j -K;12 K~~ -K;1341 42

(18)

By solving eqn (14), the displacements at the junctions can be obtained and then the whole
displacement field can finally be obtained (Liu and Achenbach, 1994b).

3.4. A technique for determining the horizontal crack
The ultimate goal of the analytical modeling is to find out the relationship between the

characteristics of cracks in the plate and the responses of the plate to the imposed loads. A
technique to find out the relationship is to move the loading along the surface of the plate
[change the value of d in eqn (2)], and in the meantime pick up the resulting displacement
in the z-direction at the central point of the distributed load (x = d), then plot the responses
of the plate while the load scans over the plate. For a plate without crack, the scanning
result is a horizontal line, because the responses of the uncracked plate at the central point
of load are independent of the location of the load, as infinitely long plates are considered
in this paper. However, for a cracked plate, the scanning result will no longer be a constant,
and the responses can be expected to have a significant change when the load passes over
the crack tips. This provides a way to find out the length of the crack in the plate. Moreover,
the responses in the region in between the two crack tips can be expected to contain
information related to the thickness of domain III (see Fig. 1) and the crack depth. By
investigating these responses, the depth of the crack can also be found. The following
section will show how this technique works by numerical experiments.

4. NUMERICAL EXPERIMENTS

Numerical experiments are made for a homogeneous isotropic plate with a Poisson's
ratio of J1. = 1/3 and a hybrid laminated plate denoted by [C90/G45/G--45]s with horizontal
cracks. In the notation for the laminate, the letters C and G stand, respectively, for
carbon/epoxy and glass/epoxy layers, while the numbers following the letters indicate the
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Fig. 2. Scanning results of the absolute value of the vertical displacement amplitude for an isotropic
plate (/1 = 1/3) with a horizontal crack. The left crack tip of the crack is at the origin.
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Fig. 3. As in Fig. 2, but the dimensionless frequency of the load is 3.14.

angle of the fiber orientation with respect to the x-axis and the subscript s indicates that
the plate is symmetrically stacked. Material constants of carbon/epoxy and glass/epoxy can
be found in a paper by Liu et al. (1991a).

In this paper the following dimensionless parameters are used:

x = x/H, IV = C44W/qO, w = wH/cs

Cs = JC44/p, C44 = c(4, 4), de = de/H, (19)

where w is the displacement in the z-direction, and c, p and Cs are the material constants
matrix, density and shear wave velocity of the reference material, respectively. For the
homogeneous isotropic plate, the reference material is the material of the plate. For the
[C90/G45/G--45]s plate, C90 is chosen as the reference material.

4.1. Detection of a crack in an isotropic plate

4.1.1. Crack length. The responses of the plate to the harmonic load are dependent on
the frequencies of the load. The frequency dependency of the scanning result of a cracked
plate is first investigated. Figures 2--4 show the scanning results of the absolute value of
displacement amplitude of the plate excited by the load as given by eqn (1). The results are
obtained by using SEM, and the frequencies of the load are 1.57w (Fig. 2), 3.14w (Fig. 3)
and 6.28w (Fig. 4), whose corresponding shear wavelengths are 4.0H, 2.0H and I.OH,
respectively. From Figs 2--4 it is noted that the crack length can be approximately deter
mined from the pattern change of the results when the load passes over the crack, and that
the frequency of 3.14w is the best to determine the crack length because the results in
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Fig. 4. As in Fig. 2, but the dimensionless frequency of the load is 6.28.
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Fig. 5. Scanning results of the absolute value of the vertical displacement amplitude for an isotropic
plate (/1 = 1(3) with a horizontal crack. The left crack tip of the crack is at the origin.
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Fig. 6. As in Fig. 5, but the crack length is 2.0H.

between the two crack tips are significantly different from the results in the uncracked
region. Hence the following results are obtained by using a harmonic load with a frequency
of 3.l4w.

Scanning results for other crack lengths, ac = l.OH, 2.0H and 3.0H, are shown in Figs
5-7. In all the cases, the positions of the cracks can be determined approximately from the
scanning result. Although the exact crack length is difficult to find out from the scanning
result, clear images of the cracks can be obtained.
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Fig. 7. As in Fig. 5, but the crack length is 3.0H.
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Fig. 8. As in Fig. 3, but the crack depth is O.25H.

4.1.2. Depth of the crack. From Fig. 3 an important fact can be observed. The spacings
of the peaks of the oscillations in the region of 0 < x < ac are about the same. Comparing
with Figs 3 and 7, it is found that the spacings of the peaks of the oscillations in 0 < x < ae

for ae = 3.0H are almost the same as for ae = 5.0H. This fact tells us that the peak spacing
of the oscillation is less dependent on the crack length.

Changing the depth of the crack to 0.25H for the case of ae 5.0H, the scanning
results are shown in Fig. 8. It is found again that the peak spacings of the oscillation in the
region of 0 < x < ae are almost the same. However, the peak spacing for the de = 0.25H
(Fig. 8) is much smaller than for de O.5H (Fig. 3). This is a very important fact because
it indicates that the depth of the crack is related to the peak spacing of the oscillations in
the region of 0 < x < ae •

To find out the relationship between the crack depth and the peak spacing of the
oscillations, we investigated the scanning results of the plate using the following steps.

1. Calculate the scanning results for plates with various crack depths and lengths, and
output the results over the region of 0 < x < ae •

2. Transfer the results to wave number domain

w(k) f' w(x) exp (- ikx) dx, (20)

where the k is the wave number. The spectra of the results are shown in Figs 9-12.
It is noted that the wave number, at which the response has the maximum value, is
related to the peak spacings of the oscillation in 0 < x < ac • In this paper, we call



Horizontal crack in anisotropic laminated plates

0.5 r---------------------,

2973

0.4
.......
I~

~
0.3

0.2

0.1

0
0 10 20 30

kH

ro =3.14

a.=2.0H

d.=O.25H

40 50 60

Fig. 9. Spectrum of scanning results for an isotropic plate (Jl = 1(3) with a horizontal crack.

0.8

0.6 l'Ji =3.14
I~ a =4.0H

~
•

0.4 d.=O.25H

0.2

30

kH
40 50 60

Fig. 10. As in Fig. 9, but the crack length is 4.0H.
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Fig. II. As in Fig. 9, but the crack depth is O.5H.

this wave number the central wave number, and denote it by kmax . By comparing
Figs 9-12, it can be found that the central wave numbers are almost the same for
the same crack depths (Figs 9 and 10; Figs II and 12), and are significantly different
for the different crack depths (Figs 9 and II; Figs 10 and 12).

3. Select the central wave numbers kmax , and plot them against the crack depths de.

The final results are shown in Fig. 13.

From Fig. 13, the crack depth is easily found from the central wave number of the scanning
results. It is also noted that the k max - de curves are less dependent on the crack length for
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Fig. 12. As in Fig. 10, but the crack depth is O.SH.

16 r-----;:::::======:::::..,

14
J:

.J
12

10

a =c

• 1.0H f3 4.OH

+2.0H ~ 5.OH
..it 3.0H

0.50.40.30.2

8l-........._ ........_"--........_ ........_J.-........_..J

0.1

Fig. 13. Depth dependency of the central wave number on the depth of the crack for an isotropic
plate (J1 = 1/3).

the case of ae ~ 2.0H. Hence the crack depth can be obtained quite accurately even though
the crack length can only be obtained approximately by the method described in Section
4.1.1. Using polynomial regression of degree 3, the relationship between the crack depth
and the central wave number can be obtained as follows:

do = 5.0279 - 0.97988p+0.06704lp2 - 0.00 15653p 3 , (21)

where p = kmaxH. Equation (21) is valid for 8.86 ~ p ~ 15.3, O.l25H ~ de ~ 0.5H,
2.0H ~ ac ~ 5.0H. The reason to limit the usage ofeqn (21) is that the samples for obtaining
it have been taken in these regions. To expand the usage of eqn (21), further investigation
has to be made. We have used this equation to predict the crack depth of a cracked plate
with crack length of 1O.OH and crack depth of 0.25H by the following procedure. First, the
scanning results in the region of 0.0 < x < ao are computed for the cracked plate with crack
length of 10.OH and crack depth ofO.25H. The results in the wave number domain are then
calculated using eqn (20) and the central wave number obtained to be 11.3343/H. Finally,
the predicted depth from eqn (21) is 0.2478H, compared to 0.25H as given. Obviously, this
is a very good prediction.

4.2. Detection of a crack in an anisotropic laminated plate

4.2.1. Crack length. Figures 14 and 15 show the scanning results of a hybrid laminated
plate [C90/G+ 45/G--45]s for crack lengths of 2.0H and 4.0H. Clear images of crack length
in the plates can be obtained.

4.2.2. Depth ofthe crack. Following the same procedure described in Section 4.1.2, the
kmax -de curves for the [C90/G+ 45/G--45]s plate can be obtained and are shown in Fig. 16.
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Fig. 14. Scanning results of the absolute value of the vertical displacement amplitude for an
anisotropic laminated plate with a horizontal crack. The left crack tip of the crack is at the origin.
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Fig. 15. As in Fig. 14, but the crack length is 4.0H.
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Fig. 16. Depth dependency of the central wave number on the depth of the crack for a hybrid
laminated plate.

Using polynomial regression of degree 3, a formulation of the relationship between the
crack depth and the central wave number can be obtained as follows:

de = 6.1914-1.2144p+O.082547p 2 -O.OOI9016p 3, (22)

where p = kmaxH. Equation (22) is valid for 9.19 <p < 15.4, O.125H < de < O.5H,
2.0H < Ge < 5.0H.
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5. COMMENTS ON THE PROPOSED TECHNIQUE

Conventional ultrasonic techniques, such as B- and C-scan techniques, are widely used
in non-destructive testing and are effective in detecting cracks and flaws that are parallel to
the surfaces of the plates. For the cases discussed in Section 4, crack lengths and depths
can be accurately obtained by these techniques. However, these techniques are difficult to
use for vertically and obliquely situated cracks and flaws with an oblique or curved surface.
Moreover, the efficiency of these techniques depends on the surface quality of the crack
and the flaw. The reason is that these techniques are using pulses of body waves such as
longitudinal, and are based on the measurement of reflected or transmitted pulses in the
real time. For a vertical or oblique crack or a crack with very poor quality of reflection or
a flaw with an oblique or curved surface, the signals may not come back, and hence it is
difficult to characterize this kind of crack and flaw. In the technique presented in this paper,
time-harmonic input loads are used. Cracks have been characterized from the pattern of
responses of the plate to the time-harmonic input at a single frequency. These responses
consist of a number of guided waves scattered by cracks and are less dependent on the
quality of the crack surface but heavily dependent on the size, orientation and location of
the cracks. Therefore, the present technique has the potential to detect vertical and oblique
cracks, cracks of poor surface quality and flaws with oblique or curved surfaces. In this
paper, only horizontal cracks are discussed. Detection of flaws will be discussed in a follow
up paper and oblique cracks will also be considered in the near future.

The disadvantage of the present technique is that it is difficult to obtain a very accurate
crack length especially for short cracks. For a crack of Gc < 2.0H, eqns (21) and (22) cannot
be used, and the crack depth has to be determined by using its kmax-dc curve for a given
crack length.

6. CONCLUSIONS

A technique for the characterization of a horizontal crack in anisotropic laminated
plates has been presented. Numerical experiments have been made by using the strip element
method. It has been shown that the technique presented can be used successfully to detect
both the length and the depth of horizontal cracks in anisotropic laminated plates. This
technique is expected to be used in practical problems, such as in the characterizations of
delaminations in composite laminated plates.
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